234 research outputs found

    Tidal effects and the Proximity decay of nuclei

    Get PDF
    We examine the decay of the 3.03 MeV state of 8^8Be evaporated from an excited projectile-like fragment following a peripheral heavy-ion collision. The relative energy of the daughter α\alpha particles exhibits a dependence on the decay angle of the 8^8Be^*, indicative of a tidal effect. Comparison of the measured tidal effect with a purely Coulomb model suggests the influence of a measurable nuclear proximity interaction.Comment: 5 pages, 4 figure

    Atom Interferometry for Dark Contents of the Vacuum Searches

    Get PDF
    A cold atom interferometer is being developed using 85Rb atoms towards a search for the dark contents of the vacuum, and as a test stand for inertial sensing applications. Here we outline the current status of the experiment and report the observation of Ramsey interference fringes in the apparatus

    A simple method for estimating the major nuclide fractional fission rates within light water and advanced gas cooled reactors

    Get PDF
    The standard method for calculating anti-neutrino emissions from a reactor involves knowing the fractional fission rates for the most important fissioning nuclides in the reactor. To calculate these rates requires detailed reactor physics calculations based upon the reactor design, fuel design, burnup dependent fuel composition, location of specific fuel assemblies in the core and detailed operational data from the reactor. This has only been published for a few reactors during specific time periods, whereas to be of practical use for anti-neutrino reactor monitoring it is necessary to be able to predict these on the publicly available information from any reactor, especially if using these data to subtract the anti-neutrino signal from other reactors to identify an undeclared reactor and monitor its operation. This paper proposes a method to estimate the fission fractions for a specific reactor based upon publicly available information and provides a database based upon a series of spent fuel inventory calculations using the FISPIN10 code and its associated data libraries

    Supernova model discrimination with a kilotonne-scale Gd-H2O Cherenkov detector

    Get PDF
    The supernova model discrimination capabilities of the WATCHMAN detector concept are explored. This cylindrical kilotonne-scale water Cherenkov detector design has been developed to detect reactor antineutrinos through inverse β-decay for non-proliferation applications but also has the ability to observe antineutrino bursts of core-collapse supernovae within our galaxy. Detector configurations with sizes ranging from 16 m to 22 m tank diameter and 10% to 20% PMT coverage are used to compare the expected observable antineutrino spectra based on the Nakazato, Vartanyan and Warren supernova models. These spectra are then compared to each other with a fixed event count of 100 observed inverse β-decay events and a benchmark supernova at 10 kpc distance from Earth. By comparing the expected spectra, each detector configuration's ability to distinguish is evaluated. This analysis then demonstrates that the detector design is capable of meaningful event discrimination (90+% accuracy) with 100 observed supernova antineutrino events in most configurations. Furthermore, a larger tank configuration can maintain this performance at 10 kpc distance and above, indicating that overall target mass is the main factor for such a detector's discrimination capabilities. Finally, it is estimated that the detector design can provide early warning capability for supernova bursts for the entire Milky Way in all configurations

    Monitoring Reactor Anti-Neutrinos Using a Plastic Scintillator Detector in a Mobile Laboratory

    Get PDF
    Technology developed for the T2K electromagnetic calorimeter has been adapted to make a small footprint, reliable, segmented detector to characterise anti-neutrinos emitted by nuclear reactors. The device has been developed and demonstrated by the University of Liverpool and underwent field tests at the Wylfa Magnox Reactor on Anglesey, UK. It was situated in a 20\,ft ISO shipping container, above ground, roughly 60\,m from the 1.5\,\GWt\ reactor core. Based on the design of the T2K Near Detector ECal, the device detects anti-neutrinos through the distinctive delayed coincidence signal of inverse β\beta-decay interactions using extruded plastic scintillator and Hamamatsu Multi-Pixel Photon Counters

    alpha-particle production in the scattering of 6He by 208Pb at energies around the Coulomb barrier

    Full text link
    New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of α\alpha particles. The energy and angular distributions of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the α\alpha particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakly bound states of the final nucleus.Comment: 20 pages, 5 figures. Nuclear Physics A792 (2007) 2-1

    The T2K ND280 Off-Axis Pi-Zero Detector

    Full text link
    The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the P{\O}D is to measure the relevant cross sections for neutrino interactions that generate pi-zero's, especially the cross section for neutral current pi-zero interactions, which are one of the dominant sources of background to the electron neutrino appearance signal in T2K. The P{\O}D is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM

    Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector

    Get PDF
    The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which is measured with precision 2-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood.Comment: accepted by PR
    corecore